We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : elapsedTime T=carpetBettiTable(a,b,3)
-- .00213326s elapsed
-- .00643849s elapsed
-- .0252148s elapsed
-- .0111643s elapsed
-- .0045663s elapsed
-- .284027s elapsed
0 1 2 3 4 5 6 7 8 9
o2 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : BettiTally
|
i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o3 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i4 : elapsedTime T'=minimalBetti J
-- .187622s elapsed
0 1 2 3 4 5 6 7 8 9
o4 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o4 : BettiTally
|
i5 : T-T'
0 1 2 3 4 5 6 7 8 9
o5 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o5 : BettiTally
|
i6 : elapsedTime h=carpetBettiTables(6,6);
-- .00472412s elapsed
-- .0271298s elapsed
-- .172048s elapsed
-- 1.2467s elapsed
-- .364997s elapsed
-- .23937s elapsed
-- .00717354s elapsed
-- 5.183s elapsed
|
i7 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o7 : BettiTally
|
i8 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o8 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o8 : BettiTally
|