We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : h=carpetBettiTables(a,b)
-- .00232815s elapsed
-- .0062083s elapsed
-- .0238424s elapsed
-- .0105713s elapsed
-- .00388236s elapsed
0 1 2 3 4 5 6 7 8 9
o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
0: 1 . . . . . . . . .
1: . 36 160 315 288 . . . . .
2: . . . . . 288 315 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
2 => total: 1 36 167 370 476 476 370 167 36 1
0: 1 . . . . . . . . .
1: . 36 160 322 336 140 48 7 . .
2: . . 7 48 140 336 322 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
3 => total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : HashTable
|
i3 : T= carpetBettiTable(h,3)
0 1 2 3 4 5 6 7 8 9
o3 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o3 : BettiTally
|
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o4 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i5 : elapsedTime T'=minimalBetti J
-- .252707s elapsed
0 1 2 3 4 5 6 7 8 9
o5 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o5 : BettiTally
|
i6 : T-T'
0 1 2 3 4 5 6 7 8 9
o6 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o6 : BettiTally
|
i7 : elapsedTime h=carpetBettiTables(6,6);
-- .00437452s elapsed
-- .0173573s elapsed
-- .112003s elapsed
-- 1.2566s elapsed
-- .317746s elapsed
-- .241482s elapsed
-- .0073461s elapsed
-- 4.90961s elapsed
|
i8 : keys h
o8 = {0, 2, 3, 5}
o8 : List
|
i9 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o9 : BettiTally
|
i10 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o10 : BettiTally
|